

This zine is based on my personal story and it’s a
compilation of all the explanations that have helped me

understand XSS and HTML escaping
(with some fun drawings!).

It’s not a deep dive into the topic but rather an
overview of the main concepts necessary to prevent

XSS attacks, I would say it’s a good introduction!

I don’t take any credit for the technical explanations.
I used OWASP (Open Web Application Security

Project) as my main source.

When I started working as a
dev I had very little

knowledge about cyber
security. Thankfully, I had an

awesome team of senior devs
that guided me, especially the
first time I had to fix an XSS

vulnerability.

Hi, I’m Maru!

marucodes.com

I hope reading it brings awareness to one of the
most common web security vulnerabilities, making

this zine certainly did it for me :)

Also, special thanks to Julia Evans because her
amazing zines inspired me to make my own.

Special thanks to Jesse and Danilo for always
teaching me how to be a better dev.

“Cross-Site Scripting (XSS) attacks are a type of
injection, in which malicious scripts are injected
into otherwise benign and trusted websites.

XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the
form of a browser side script, to a different end
user’s browser who has no way to know that the
script should not be trusted, and will execute it.”

The first time I heard about the term XSS was
something like this:

Therefore, I looked it up:

OWASP.org

Reading the word “attack” made me panic a bit.
Before that I hadn’t dealt with a security vulnerability,
thankfully nothing terrible had happened and it was
reported on time but I imagined something like this:

The idea of someone with bad intentions being
able to inject malicious code in our app made me

nervous but also inspired me to learn how to
prevent it.

As it turns out, we had several XSS vulnerabilities in
our legacy codebase.

I learned that the most common one was happening
because we were displaying unescaped user input

where we shouldn’t have.

 Understanding the difference between escaped
and unescaped user input was very straightforward
but I kept mixing up the terms because they sound
similar, so one way I like to differentiate them is by
remembering that “unescaped” could potentially

mean “unsafe”.

Lesson #1:

Escaped

Save

Unescaped

This is a bold

title.

For example, let’s say you have an app that allows
users to share blog posts and there’s a form where

they can enter the title of the post.

What if someone saves this as the post title?

This is a bold title.

Depending on how it’s being displayed, the output
could be either of these:

This is a bold title

As you can see in the unescaped version, the code
is being executed. Instead of displaying the text “as

it is” the browser is interpreting it as HTML.

Enter post title:

That previous example was just styling but it can be
a not so friendly script that would run for all users

who visit the page where that blog title is!

Like a cookie grabber script:

<script type="text/javascript">
 let adr = '../evil.php?cakemonster=' +
 escape(document.cookie);
</script>

If the app doesn’t escape the input and validates it,
an attacker can steal an authenticated user’s cookie

by passing its content to the evil.php script in the
“cakemonster” variable.

Example from OWASP.

Save

Enter post title:

The attacker then checks the results of their script
and uses the cookie.

“XSS attacks may occur anywhere
that possibly malicious users are

allowed to post unregulated material
to a trusted website for the

consumption of other valid users.”

Think about every place in your app where
you’re ingesting user input. It could be text, links,

attributes.

If not handled properly, those are all opportunities
for users to inject malicious code. Making sure the

data is properly encoded is very important to
prevent that from happening.

HTML escaping

For example, if the less than symbol (<) and the
greater than symbol (>) are not properly encoded,
they can be interpreted as part of an HTML tag,

which can cause unexpected behaviors.

We saw that displaying escaped user input prevents
the browser from interpreting the text as HTML

and executing the code.

HTML escaping, also known as character encoding,
is the process of replacing special characters with
their corresponding HTML entities to make sure

they’re displayed correctly.

HTML escaping involves replacing these special
characters with their corresponding HTML entities,

such as < for < and > for >.

Going back to our example of bold text, the escaped
output would look like this to users:

This is a bold title.

But, if you go to “View source code” in the browser
and find that same element, you’d see the escaped

HTML like this:

This is bold text.

Note: this can’t be seen using the inspect tool
because the inspector shows a view of the DOM and
at that point the HTML has already been parsed and
the entities converted to characters in text nodes.

It kind of feels like magic, right? ;)

"By the mystic echoes of
code and web, I summon the

HTML escape, a shield to
weave < and >, now

transformed in this arcane
dance, protect my text from
mischief's chance. Rendered

safe in the web's grand
maze, let this spell guard

my content's days!"

Terminology: escaping vs encoding

I’ve mentioned a couple of times the words
“escaping” and “encoding” and when it comes to
XSS these are largely used interchangeably as

both help render unsafe external inputs safe in an
executable context.

But they are technically two different things:

Encoding involves translating special characters
into some different but equivalent form that is no

longer dangerous in the target interpreter.

Escaping is a subset of encoding, it involves
adding a special character before the

character/string to avoid it being misinterpreted.

< <

'that\'s it'

escape
character Source

https://owasp.org/www-project-proactive-controls/v3/en/c4-encode-escape-data#:~:text=Encoding%2FEscaping%20can%20be%20used,shell%20escaping%E2%80%9D%2C%20or%20similar.

HTML
escaping/encoding

Converting special characters that have special
meaning in HTML into HTML entities

A way of representing special characters or
symbols that cannot be directly used in

HTML

Here’s a summary of the terms recently mentioned:

HTML entities

 < is one of the many HTML entities

When should you escape?

Should you escape user input before storing it in
the database or save it as it is and escape it while

retrieving? This was a question I saw in
StackOverflow that I thought would be interesting

to mention here.

My friend Jesse was explaining this difference to
me, he mentioned that you can either escape on

output or input and that generally you always want
to escape on output.

Output is any data that leaves your application
bound for another client or application. The

receiving client or application expects the data to
be of a specific format (HTML, SQL, etc.)

Therefore, the only code that knows what
characters are dangerous is the code that’s

outputting in a given context.

So the better approach is to store the data as it's
intended in the database, and then have the

template system HTML-escape when outputting
HTML.

In the previous sections I focused on output
encoding for “HTML Contexts” but there are many

different output encoding methods because
browsers parse HTML, JavaScript, URLs, and CSS

differently.

Therefore it’s important to use the right encoding
method for each context, otherwise the wrong
method may introduce weaknesses or harm the

functionality of your app.

Other contexts may include:

Check out this OWASP cheatsheet to
learn about all the other contexts.

 HTML Attribute Contexts
JavaScript Contexts
CSS Contexts

All contexts

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

How to safely display content when users
need to author HTML

Let’s say you want to allow users to change the
styling or structure of content of a blog post inside

a WYSIWYG editor. Output encoding here will
prevent XSS, but it will break the intended

functionality of the editor as the styling will not be
rendered. In these cases, HTML Sanitization should

be used.

HTML sanitization is the process of examining an
HTML document and producing a new one that

preserves only whatever tags are designated "safe"
and desired.

If you sanitize content and then modify it
afterwards, you can easily void your security
efforts.

If you sanitize content and then send it to a
library for use, check that it doesn’t mutate
that string somehow. Otherwise, again, your
security efforts are void.

OWASP recommends DOMPurify for HTML
Sanitization.

There are some further things to consider:

Using frameworks that have built in measures
to prevent XSS

Apps built with modern frameworks that default to
safely performing output encoding are apps with

fewer XSS bugs.

OWASP says:
“These frameworks steer developers towards good
security practices and help mitigate XSS by using

templating, auto-escaping, and more.”

ReactJS
AngularJS
Handlebars
LiquidJS
Rails

Here are some examples:

It’s important you understand how your framework
prevents XSS and where it has gaps.

In general you don’t want to bypass the auto-
escaping but there will be times where you need to
do something outside the protection provided by

your framework.

This is where Output Encoding and HTML
Sanitization are critical.

Special mention

I wanted to make one special mention to input
validation since it can significantly contribute to

prevent XSS.

I like to think of adding validation rules as
affirmations for my inputs.

Input validation is the testing of any input (or data)
provided by a user or application against expected

criteria. It prevents malicious or poorly qualified data
from entering an information system to prevent

attacks and mistakes.

“For XSS attacks to be successful,
an attacker needs to insert and
execute malicious content in a

webpage. Ensuring that all
variables go through validation and

are then escaped or sanitized is
known as perfect injection

resistance.

Any variable that does not go
through this process is a potential

weakness. ”

- OWASP

Drawing by my mom :)

Thanks for reading!

marucodes.com

